Fate and metabolism of [15N]2,4,6-trinitrotoluene in soil.
نویسندگان
چکیده
The fates of the labels from [14C] and [15N] trinitrotoluene were analyzed in bioreactors under aerobic conditions in soil treated by a fungal bioremediation process with Stropharia rugosoannulata and in control soil. Up to 17.5% of the 15N label had a different fate than the 14C label. Three N-mineralization processes were identified in detailed experiments with [15N]TNT. About 2% of the 15N label was found as NO3- and NH4+, showing simultaneous processes of direct TNT denitration (I) and reduction with cleavage of the amino groups (II). The enrichment of NO2-/NO3- (up to 7.5 atom% 15N abundance) indicates the formation of Meisenheimer complexes with a denitration of [15N]TNT. A 1.4% of the label was found distributed between N2O and N2. However, the 15N enrichment of the N2O (up to 38 atom%) demonstrated that both N atoms were generated from the labeled TNT and clearly indicates a novel formation process (III). We propose, as an explanation, the generation of N2O by cleavage from condensed azoxy metabolites. In addition, 1.7% of the 15N label was detected as biogenic amino acids in the wheat straw containing the fungus. Overall, 60 to 85% of the applied [15N]TNT was degraded and 52 to 64% was found as nonextractable residues in the soil matrix. Three percent was detected as 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene.
منابع مشابه
Solid-state nitrogen-15 nuclear magnetic resonance analysis of biologically reduced 2,4,6-trinitrotoluene in a soil slurry remediation.
Soil contaminated with 2,4,6-trinitrotoluene (TNT) and spiked with [14C]- and [15N3]-TNT was subjected to an anaerobic-aerobic soil slurry treatment and subsequently analyzed by radiocounting and solid-state 15N nuclear magnetic resonance (NMR) spectroscopy. This treatment led to a complete disappearance of extractable radioactivity originating from TNT and almost all of the radioactivity was r...
متن کاملScreening Effective Factors in Slurry Phase Bioremediation of 2,4,6-Trinitrotoluene (TNT) Contaminated Soil
متن کامل
Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation.
2,4,6-Trinitrotoluene ((15)N or (13)C labeled) was added to Norfolk Harbor sediments to test whether anaerobic bacteria use TNT for growth. Stable-isotope probing (SIP)-terminal restriction fragment length polymorphism (TRFLP) detected peaks in the [(15)N]TNT cultures (60, 163, and 168 bp). The 60-bp peak was also present in the [(13)C]TNT cultures and was related to Lysobacter taiwanensis.
متن کاملFate and stability of 14C-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processes.
Biological treatment of 2,4,6-trinitrotoluene (TNT) in soil rarely results in complete mineralization of the parent compound. More often, the largest proportion of the TNT carbon is incorporated into the soil organic matrix. Therefore, we evaluated the stability of nonextractable residues from various bioremediation processes of 14C-TNT in soils. The extractable amounts of the residual radioact...
متن کاملEffects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms.
The present study was aimed at providing data to be used at predicting exposure-based effects of 2,4,6-trinitrotoluene (TNT) aged in soil on endpoint organisms representing two trophic levels. These data can be used to define criteria or reference values for environmental management and conducting specific risk assessment. Long-term exposure tests were conducted to evaluate sublethal toxicity a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental toxicology and chemistry
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2004